158 research outputs found

    Mobile Communication Signatures of Unemployment

    Full text link
    The mapping of populations socio-economic well-being is highly constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess; thus the speed of which policies can be designed and evaluated is limited. However, recent studies have shown the value of mobile phone data as an enabling methodology for demographic modeling and measurement. In this work, we investigate whether indicators extracted from mobile phone usage can reveal information about the socio-economical status of microregions such as districts (i.e., average spatial resolution < 2.7km). For this we examine anonymized mobile phone metadata combined with beneficiaries records from unemployment benefit program. We find that aggregated activity, social, and mobility patterns strongly correlate with unemployment. Furthermore, we construct a simple model to produce accurate reconstruction of district level unemployment from their mobile communication patterns alone. Our results suggest that reliable and cost-effective economical indicators could be built based on passively collected and anonymized mobile phone data. With similar data being collected every day by telecommunication services across the world, survey-based methods of measuring community socioeconomic status could potentially be augmented or replaced by such passive sensing methods in the future

    High modularity creates scaling laws

    Get PDF
    Scaling laws have been observed in many natural and engineered systems. Their existence can give useful information about the growth or decay of one quantitative feature in terms of another. For example, in the field of city analytics, it is has been fruitful to compare some urban attribute, such as energy usage or wealth creation, with population size. In this work, we use network science and dynamical systems perspectives to explain that the observed scaling laws, and power laws in particular, arise naturally when some feature of a complex system is measured in terms of the system size. Our analysis is based on two key assumptions that may be posed in graph theoretical terms. We assume (a) that the large interconnection network has a well-defined set of communities and (b) that the attribute under study satisfies a natural continuity-type property. We conclude that precise mechanistic laws are not required in order to explain power law effects in complex systems—very generic network-based rules can reproduce the behaviors observed in practice. We illustrate our results using Twitter interaction between accounts geolocated to the city of Bristol, UK

    How citation boosts promote scientific paradigm shifts and Nobel Prizes

    Get PDF
    Nobel Prizes are commonly seen to be among the most prestigious achievements of our times. Based on mining several million citations, we quantitatively analyze the processes driving paradigm shifts in science. We find that groundbreaking discoveries of Nobel Prize Laureates and other famous scientists are not only acknowledged by many citations of their landmark papers. Surprisingly, they also boost the citation rates of their previous publications. Given that innovations must outcompete the rich-gets-richer effect for scientific citations, it turns out that they can make their way only through citation cascades. A quantitative analysis reveals how and why they happen. Science appears to behave like a self-organized critical system, in which citation cascades of all sizes occur, from continuous scientific progress all the way up to scientific revolutions, which change the way we see our world. Measuring the "boosting effect" of landmark papers, our analysis reveals how new ideas and new players can make their way and finally triumph in a world dominated by established paradigms. The underlying "boost factor" is also useful to discover scientific breakthroughs and talents much earlier than through classical citation analysis, which by now has become a widespread method to measure scientific excellence, influencing scientific careers and the distribution of research funds. Our findings reveal patterns of collective social behavior, which are also interesting from an attention economics perspective. Understanding the origin of scientific authority may therefore ultimately help to explain, how social influence comes about and why the value of goods depends so strongly on the attention they attract.Comment: 6 pages, 6 figure

    Co-evolution of density and topology in a simple model of city formation

    Full text link
    We study the influence that population density and the road network have on each others' growth and evolution. We use a simple model of formation and evolution of city roads which reproduces the most important empirical features of street networks in cities. Within this framework, we explicitely introduce the topology of the road network and analyze how it evolves and interact with the evolution of population density. We show that accessibility issues -pushing individuals to get closer to high centrality nodes- lead to high density regions and the appearance of densely populated centers. In particular, this model reproduces the empirical fact that the density profile decreases exponentially from a core district. In this simplified model, the size of the core district depends on the relative importance of transportation and rent costs.Comment: 13 pages, 13 figure

    Influenza and Pneumonia Mortality in 66 Large Cities in the United States in Years Surrounding the 1918 Pandemic

    Get PDF
    The 1918 influenza pandemic was a major epidemiological event of the twentieth century resulting in at least twenty million deaths worldwide; however, despite its historical, epidemiological, and biological relevance, it remains poorly understood. Here we examine the relationship between annual pneumonia and influenza death rates in the pre-pandemic (1910–17) and pandemic (1918–20) periods and the scaling of mortality with latitude, longitude and population size, using data from 66 large cities of the United States. The mean pre-pandemic pneumonia death rates were highly associated with pneumonia death rates during the pandemic period (Spearman r = 0.64–0.72; P,0.001). By contrast, there was a weak correlation between pre-pandemic and pandemic influenza mortality rates. Pneumonia mortality rates partially explained influenza mortality rates in 1918 (r = 0.34, P = 0.005) but not during any other year. Pneumonia death counts followed a linear relationship with population size in all study years, suggesting that pneumonia death rates were homogeneous across the range of population sizes studied. By contrast, influenza death counts followed a power law relationship with a scaling exponent of ,0.81 (95%CI: 0.71, 0.91) in 1918, suggesting that smaller cities experienced worst outcomes during the pandemic. A linear relationship was observed for all other years. Our study suggests that mortality associated with the 1918–20 influenza pandemic was in part predetermined by pre-pandemic pneumonia death rates in 66 large US cities, perhaps through the impact of the physical and social structure of each city. Smaller cities suffered a disproportionately high per capita influenza mortality burden than larger ones in 1918, while city size did not affect pneumonia mortality rates in the pre-pandemic and pandemic periods

    Limited Urban Growth: London's Street Network Dynamics since the 18th Century

    Get PDF
    We investigate the growth dynamics of Greater London defined by the administrative boundary of the Greater London Authority, based on the evolution of its street network during the last two centuries. This is done by employing a unique dataset, consisting of the planar graph representation of nine time slices of Greater London's road network spanning 224 years, from 1786 to 2010. Within this time-frame, we address the concept of the metropolitan area or city in physical terms, in that urban evolution reveals observable transitions in the distribution of relevant geometrical properties. Given that London has a hard boundary enforced by its long-standing green belt, we show that its street network dynamics can be described as a fractal space-filling phenomena up to a capacitated limit, whence its growth can be predicted with a striking level of accuracy. This observation is confirmed by the analytical calculation of key topological properties of the planar graph, such as the topological growth of the network and its average connectivity. This study thus represents an example of a strong violation of Gibrat's law. In particular, we are able to show analytically how London evolves from a more loop-like structure, typical of planned cities, toward a more tree-like structure, typical of self-organized cities. These observations are relevant to the discourse on sustainable urban planning with respect to the control of urban sprawl in many large cities, which have developed under the conditions of spatial constraints imposed by green belts and hard urban boundaries.Comment: PlosOne, in publicatio

    Increase of universality in human brain during mental imagery from visual perception

    Get PDF
    BACKGROUND: Different complex systems behave in a similar way near their critical points of phase transitions which leads to an emergence of a universal scaling behaviour. Universality indirectly implies a long-range correlation between constituent subsystems. As the distributed correlated processing is a hallmark of higher complex cognition, I investigated a measure of universality in human brain during perception and mental imagery of complex real-life visual object like visual art. METHODOLOGY/PRINCIPAL FINDINGS: A new method was presented to estimate the strength of hidden universal structure in a multivariate data set. In this study, I investigated this method in the electrical activities (electroencephalogram signals) of human brain during complex cognition. Two broad groups--artists and non-artists--were studied during the encoding (perception) and retrieval (mental imagery) phases of actual paintings. Universal structure was found to be stronger in visual imagery than in visual perception, and this difference was stronger in artists than in non-artists. Further, this effect was found to be largest in the theta band oscillations and over the prefrontal regions bilaterally. CONCLUSIONS/SIGNIFICANCE: Phase transition like dynamics was observed in the electrical activities of human brain during complex cognitive processing, and closeness to phase transition was higher in mental imagery than in real perception. Further, the effect of long-term training on the universal scaling was also demonstrated

    An Integrative Approach to Understanding Counterproductive Work Behavior: The Roles of Stressors, Negative Emotions, and Moral Disengagement

    Get PDF
    Several scholars have highlighted the importance of examining moral disengagement (MD) in understanding aggression and deviant conduct across different contexts. The present study investigates the role of MD as a specific social-cognitive construct that, in the organizational context, may intervene in the process leading from stressors to counterproductive work behavior (CWB). Assuming the theoretical framework of the stressor-emotion model of CWB, we hypothesized that MD mediates, at least partially, the relation between negative emotions in reaction to perceived stressors and CWB by promoting or justifying aggressive responses to frustrating situations or events. In a sample of 1,147 Italian workers, we tested a structural equations model. The results support our hypothesis: the more workers experienced negative emotions in response to stressors, the more they morally disengaged and, in turn, enacted CW
    • …
    corecore